A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli.
نویسندگان
چکیده
In the genomes of many organisms, deletions arise between tandemly repeated DNA sequences of lengths ranging from several kilobases to only a few nucleotides. Using a plasmid-based assay for deletion of a 787-bp tandem repeat, we have found that a recA-independent mechanism contributes substantially to the deletion process of even this large region of homology. No Escherichia coli recombination gene tested, including recA, had greater than a fivefold effect on deletion rates. The recA-independence of deletion formation is also observed with constructions present on the chromosome. RecA promotes synapsis and transfer of homologous DNA strands in vitro and is indispensable for intermolecular recombination events in vivo measured after conjugation. Because deletion formation in E. coli shows little or no dependence on recA, it has been assumed that homologous recombination contributes little to the deletion process. However, we have found recA-independent deletion products suggestive of reciprocal crossovers when branch migration in the cell is inhibited by a ruvA mutation. We propose a model for recA-independent crossovers between replicating sister strands, which can also explain deletion or amplification of repeated sequences. We suggest that this process may be initiated as post-replicational DNA repair; subsequent strand misalignment at repeated sequences leads to genetic rearrangements.
منابع مشابه
Slipped misalignment mechanisms of deletion formation: in vivo susceptibility to nucleases.
Misalignment of repeated sequences during DNA replication can lead to deletions or duplications in genomic DNA. In Escherichia coli, such genetic rearrangements can occur at high frequencies, independent of the RecA-homologous recombination protein, and are sometimes associated with sister chromosome exchange (SCE). Two mechanisms for RecA-independent genetic rearrangements have been proposed: ...
متن کاملEvidence for two mechanisms of palindrome-stimulated deletion in Escherichia coli: single-strand annealing and replication slipped mispairing.
Spontaneous deletion mutations often occur at short direct repeats that flank inverted repeat sequences. Inverted repeats may initiate genetic rearrangements by formation of hairpin secondary structures that block DNA polymerases or are processed by structure-specific endonucleases. We have investigated the ability of inverted repeat sequences to stimulate deletion of flanking direct repeats in...
متن کاملRecA-independent recombination is efficient but limited by exonucleases.
Genetic recombination in bacteria is facilitated by the RecA strand transfer protein and strongly depends on the homology between interacting sequences. RecA-independent recombination is detectable but occurs at extremely low frequencies and is less responsive to the extent of homology. In this article, we show that RecA-independent recombination in Escherichia coli is depressed by the redundan...
متن کاملInstability of repetitive DNA sequences: the role of replication in multiple mechanisms.
Rearrangements between tandem sequence homologies of various lengths are a major source of genomic change and can be deleterious to the organism. These rearrangements can result in either deletion or duplication of genetic material flanked by direct sequence repeats. Molecular genetic analysis of repetitive sequence instability in Escherichia coli has provided several clues to the underlying me...
متن کاملTandem repeat recombination induced by replication fork defects in Escherichia coli requires a novel factor, RadC.
DnaB is the helicase associated with the DNA polymerase III replication fork in Escherichia coli. Previously we observed that the dnaB107(ts) mutation, at its permissive temperature, greatly stimulated deletion events at chromosomal tandem repeats. This stimulation required recA, which suggests a recombinational mechanism. In this article we examine the genetic dependence of recombination stimu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 135 3 شماره
صفحات -
تاریخ انتشار 1993